Top Five Pond Inquiries

...or Is That Seven?

THE OHIO STATE UNIVERSITY

Eugene Braig, Program
Director, Aquatic
Ecosystems Extension

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

School of Environment & Natural Resources

Some Pond Management References

- Austin, M. et al. 1996. Ohio pond management handbook: a guide to managing ponds for fishing and attracting wildlife. Ohio Department of Natural Resources, Division of Wildlife, Columbus, OH.
 - https://ohiodnr.gov/wps/portal/gov/odnr/discover-and-learn/safetyconservation/stewardship-citizen-science/pond-management
- Many older pond-management fact sheets available via correspondence:
 - braig.1@osu.edu
- My virtual open "office" hours (by appointment):
 - https://senr.osu.edu/extensionoutreach/ponds-fisheriesaquatics/open-pond-clinic-zoom
- Occasional newsletter articles:
 - http://senr.osu.edu/YourPondUpdate
- My listserv:
 - https://lists.osu.edu/mailman/listinfo/pond-management-news

Consultations with my office

General topic	Percent frequency				
	2015 (N = 247)	2016 (N = 294)	2017 (N = 278)	2018 (N = 253)	2019 (N = 260)
Aquatic plant management	14	18	19	21	17
General pond/lake management	17	12	7	13	13
Filamentous green algae	6	13	9	7	_
Harmful algal blooms	15	8	7	_	11
Wild aquatic organisms	_	_	9	10	6
Fish kills	_	10	_	7	5
Fisheries management	6	_	_	_	_

· Top five per year.

Relatively high rankers that didn't quite make the cut

- Aquatic invasive species
- Construction/Dredging
- Pond leaks/Levee erosion
- Persistently muddy water
- Specifically, Euglena blooms (recent, substantial upswing)

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

Managing aquatic plants

The essence:

- Prevention:
 - Pond construction: max depth (typically at least 8 or 12 feet) and slope (3:1).
 - Manage nutrients proactively (external vs. internal sources).
 - Dyes applied in early season (greatest benefit with increasing depth and retention time).

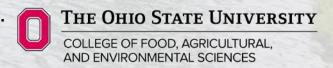
(Eugene Braig 2016)

Managing aquatic plants

The essence:

- Tolerance:
 - Beneficial competition against nuisance organisms and serves as valuable habitat (two considerations: 1. species diversity and 2. natives).
 - Ordinarily 5–20% in ponds with fisheries considerations (higher is possible for ponds without fisheries concerns and much higher is possible for ponds without fish).
 - Drawback: excessive coverage contributes to wide oxygen fluctuations and can stunt fish.
 - Drawback: requires active management and some savvy.

(Eugene Braig 2016)


Managing aquatic plants

Treatment:

- Only use herbicides specifically labeled for aquatic applications.
- Read, understand, and strictly adhere to the label, including use restrictions and safety info.
- Treat as early (1. target present and 2. effective temperature reached) and conservatively as possible.
- Warm-water caveat (as surface-water temperatures approach low-mid 70s°F).
- Whole water vs. spot treatments.
- Triploid Grass Carp/white amur (2–10 per acre) are not silver bullets.
 - Diet preference.
 - Relationship to nuisance algae.
 - Long lived.
 - Dense stocking and beneficial vegetation.

(Scott Heidrich 2011).

OHIO STATE UNIVERSITY EXTENSION

Aquatic herbicide chemical Name	Absorption	Selectivity	Water-Use Restrictions
Copper (copper sulfate and copper chelates)	Contact	Broad	Minimal
Sodium carbonate peroxyhydrate	Contact	Broad	Minimal
Diquat	Contact	Broad	Moderate
Flumioxazin*	Contact	Broad	Moderate
Carfentrazone-ethyl*	Contact	Broad	Moderate
Endothall (amine salt and potassium salt)	Contact	Broad	Moderate
Glyphosate	Systemic	Broad	Minimal
Imazamox	Systemic	Broad	Moderate
Topramezone*	Systemic	Selective	Moderate
Fluridone	Systemic	Selective	Moderate
Florpyrauxifen-benzyl*	Systemic	Selective	Moderate
Bispyribac*	Systemic	Selective	Extensive
Imazapyr	Systemic	Selective	Extensive
Penoxsulam*	Systemic	Selective	Extensive
Triclopyr	Systemic	Selective	Extensive
2,4-D	Systemic	Selective	Extensive

For details, see OSU fact sheet "Chemical Control of Aquatic Plants" (Lynch 2009) excepting *.

Contact herbicides

- Carfentrazone-ethyl* (e.g., Stingray): misc. floating and emergent plants.
- Copper sulfate and copper chelates (a vast many: e.g., Cutrine brands, etc.): mostly algae (some submersed).
- Diquat (e.g., Reward, Weedtrine-D, Aquastrike [Endothall-dipotassium blend], etc.): submersed plants and some filamentous algae.
- Endothall (e.g., Aquathol, Hydrothol, Evac Biocide, Aquastrike [Diquat blend]): submersed plants and algae.
- Flumioxazin* (e.g., Clipper, Pond-Klear, Propeller, Flumigard): misc. submersed and free-floating plants, especially duckweeds and watermeal.
- Sodium carbonate peroxyhydrate (e.g., GreenClean, Pak 27, Phycomycin, etc.): near-surface and shallow algae.
- Karmex*/Diuron*, etc.: Do not use! Not labeled for aquatic applications.

Systemic herbicides

- 2,4-D (e.g., AquaKleen, Navigate, Aquacide, Sculpin G, Weedar 64, etc.): specific plant species such as Eurasian watermilfoil, coontail, and limited effectiveness on waterlilies.
- **Bispyribac*** (e.g., Tradewind): misc., esp. floating and submersed.
- Florpyrauxifen-benzyl* (e.g., ProcellaCOR): Select free-floating, emergent, and submersed species, especially watermilfoils and several invasives.
- Fluridone (e.g., Sonar, Avast, Whitecap, etc.): primarily submersed and freefloating plants.
- Glyphosate (e.g., Rodeo, Aquamaster, AquaPro, Eraser AQ, Shore-Klear, etc.): emergent plants.
- Imazamox (e.g., Clearcast): very broad effectiveness, including several submersed invasives.
- Imazapyr (e.g., Habitat, Arsenal, etc.): emergent (esp. grasses) & some floating weeds.
- Penoxsulam* (e.g., Galleon): emergent and some floating weeds including on exposed pond sediments.
- Topramezone* (e.g., Oasis): Select submersed, floating, and emergent species including several grasses.
- Triclopyr (e.g., Renovate, Vastlan, Garlon 3A, Navitrol, etc.): selective aquatic effectiveness similar to 2,4-D.

For details, see OSU fact sheet "Chemical Control of Aquatic Plants" (Lynch 2009) excepting *.

Useful plant management references

- For ID and management recommendations (common things only):
 - Texas A&M: <u>aquaplant.tamu.edu/</u>
- For herbicide detail:
 - University of Arkansas—Division of Agriculture, Research and Extension. 2021. Recommended chemicals for weed and brush control, MP44. Cooperative Extension Service, University of Arkansas System, Little Rock, AR.:
 https://www.uaex.uada.edu/publications/pdf/mp44/mp44.pdf (vast, comprehensive, and requires some technical savvy to digest).
- For new developments and current info:
 - Aquatic Plant Management Society (APMS): http://www.apms.org/
 - Midwest Aquatic Plant Management Society: http://www.mapms.org/

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

OHIO STATE UNIVERSITY EXTENSION

Filamentous green algae

(Don't call it "moss"!)

Filamentous green algae

(Don't call it "moss"!)

The essence:

- Prevention:
 - Manage nutrients: fertilize watershed conservatively or not at all (avoid P), manage against Canada Geese, aerate with diffusers (i.e., bottom bubblers: reduces the ability of phosphorus to dissolve), etc.
 - Provide competition (i.e., tolerate plants in watershed and within pond).

Filamentous green algae

(Don't call it "moss"!)

The essence:

- Treatment:
 - Elemental copper is standard algaecide (copper sulfate or chelates): follow label.
 - Some herbicides are effective on some algal species (diquat or especially endothall or flumioxazin).
 - Copper-resistant algae (especially Pithophora spp.) are less common and difficult to manage.
 - Often treated with **copper chelates** blended with **diquat** (1:1, 2 gallons/acre-foot) or **endothall** (2:1, 1 gallon/acrefoot) with nonionic surfactant (1–2 gallons/surface acre).
 - Warm-water caveats apply to algaecide applications.
 - Blue tilapia (a tropical fish) increasingly commonly used in Ohio.
 - Assuming Largemouth Bass present, stock 7"-10" tilapia at 10-100 lbs./acre (depending on algae coverage).
 - Harvest fish in fall as metabolism slows.

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

OHIO STATE UNIVERSITY EXTENSION

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

Common planktonic taxa:

- Microcystis
- Planktothrix (cold-blooming sp. looks reddish brown)
- Aphanizomenon
- Dolichospermum (prev. Anabaena)

Common benthic taxa:

- Oscillatoria
- Microseira (prev. Lyngbya)

(Eugene Braig 2015)

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

- Often indicate nutrient enrichment (especially by excessive phosphorus or a low N:P ratio.
- Many species can produce toxins, but variably so.
 - Single point-in-time tests don't reveal much;
 meaningful toxin monitoring of a bloom site over time becomes prohibitively expensive.
 - Give monitoring priority on sites used for commercial purposes (like irrigation or aquaculture), domestic water supplies, or with public contact/access.
 - Less so (like probably not at all) on sites used for casual recreation or aesthetics (instead, limit human contact and restrict access by domestic animals).

OHIO STATE UNIVERSITY EXTENSION

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

The essence:

- Prevention:
 - Manage nutrients and provide competition (as previously discussed).
 - Aerate! ...with diffuser aeration (i.e., blowing bubbles from deep water).

Maximum depth:	6 feet	8 feet	12 feet	16 feet	20 feet	24 feet
Approx. coverage*:	1/8 acre	1/4 acre	1/2 acre	1.0 acre	1.5 acre	2.0 acre

^{*} Per diffuser plate: can vary with atypical diffuser designs.

- For example, a 2-acre site with a maximum depth of 12 feet should consider installing up to 4 diffuser plates. A 2-acre site at 16 feet deep can probably get by on 2 diffusers.
- Seasonal operation (ordinarily warm months only).
- Target two turnovers/day for ponds; perhaps one turnover/day for small lakes.

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

- Treatment caveats:
 - Tend to be late-season bloomers...
 - Standard warm-water caveat applies.
 - Cyanotoxins will ordinarily be both in solution and contained within particulate organisms.
 - Treatment won't add additional toxins, but can lyse cells placing more of the concentration in solution.
 - It's easier to filter out particulate organisms than to treat water to remove soluble chemicals.
 - Successful application of algaecides to kill a bloom will end the production of additional toxins.
 - If present, toxins will persist for some time after the bloom is eliminated. You can't know the toxins are gone unless you test for them.

Harmful algal blooms

(Cyanobacteria or "blue-green algae" aren't really algae)

The essence:

- Treatment:
 - Apply algaecides as necessary (with caveats).
 - Typical/Planktonic blooms: formulae of copper or copper chelates.
 - Tricky benthic blooms:
 - Sodium carbonate peroxyhydrate followed the next day (or so) by copper chelates + surfactant or...
 - Copper (or chelates) + diquat + surfactant.
 - Surface scums concentrated by breeze: repeat treatments with sodium carbonate peroxyhydrate.

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

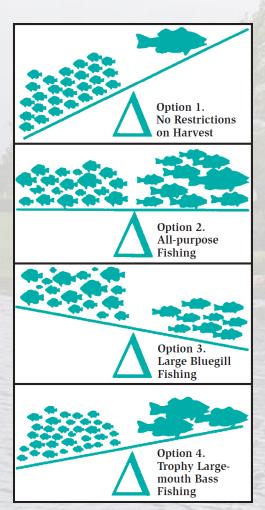
- The essence is the nature of smallness: limited space and lack of habitat diversity. A pond cannot function like Lake Erie in supporting a self-sustaining fishery!
 - Very small areas (perhaps less than ½ acre) are likely to require more active management, possibly supplemental feeding.
 - Keep fisheries extremely simple!
 ...Usually a single level of predator-prey interaction.
 - Largemouth Bass–Bluegill (supplementing with Channel Catfish if desired) is our region's tried and true.
 - Alternative species not necessarily appropriate for the pond novice.
 Ask questions if ya gots'em.

A Delaware Co., OH pond (Steve Collignon 2014).

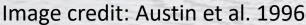
Stocking new or renovated ponds

	Number to stock per acre			
Stocking strategy	Bass	Bluegill	Redear	Catfish
Largemouth Bass-Bluegill Sunfish	100	500		
Largemouth Bass-Bluegill-Channel Catfish	100	500		100
Largemouth Bass–Redear Sunfish	100		500	
Largemouth Bass-Bluegill and Redear Sunfish	100	350	150	
Largemouth Bass-Bluegill-Redear-Catfish	100	350	150	100
Recommended size (can go larger):	3–5 in.	2–3 in.	2–3 in.	3–5 in.

New-pond ideal: Stock with Fathead
 Minnows and spawning habitat in spring.


 Follow with game species in fall.

The self-sustaining-pond-fishery quiz:


- Do you get to have both lots of fish and big fish?
- Do you get to have both trophy-sized Bluegills and trophy-sized Largemouth Bass?
- · Not likely, eh?

Common management strategies:

- 1. Do-nothing option rarely yields good fishing.
- 2. Balanced/All-purpose populations provide fair numbers across different size classes for both species. (Surprisingly fleeting.)
- 3. **Big-Bluegill strategy** is excellent for families and children.
- 4. Big-bass strategy is really for the fishing purist; not necessarily a child- or family-friendly option.

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

- The essence: almost always caused by low-oxygen events.
 - Following the event, determine cause and mitigate against repeats in future.
 - If restocking is needed, allow time for pond to recover and wait for a cool season to follow.

- Warm-season kills caused by low-oxygen stress: usually occur at night, often observed in early morning.
 - Excessive area vegetated by plants or algae in excessively shallow water.
 - Complete cover by duckweeds or watermeal.
 - Treating too extensive an area with herbicide/algaecide.
 - Prevention:
 - Tolerate moderate vegetative cover.
 - Treat vegetation as early in season and conservatively as possible.
 - Aerate.

Yes, that's total coverage by duckweed: fish = dead (Eugene Braig 2017).

- Classic summer kill: usually follows premature turnover induced by late-summer rain.
 - Can be indicated by opaque, grayish water.
 - Prevention:
 - Plan new-pond construction to allow input of wind energy and delay sunlight exposure (align fetch with prevailing wind, trees to the east and north, etc.).
 - Manage to slow pond aging and muck accumulation.
 - Aerate throughout warm months, beginning before onset of warm-season stratification.

Storm's a brewin' (Eugene Braig 2011).

- Winter kill: caused by prolonged cover by opaque or snow-covered ice.
 - Prevention:
 - Shovel snow from ¼ of pond surface.
 - Aerate from shallow water to erode a hole in ice (with waterfowl caveat).
 - · ...But not both!
 - Tolerate moderate vegetative cover.
 - Avoid large herbicide/algaecide treatments late in the previous season.

Brrr... (Donna Braig 2013).

Misc. causes:

- Low-oxygen stress will affect all fish species (albeit differentially).
- Spawning is hard work! Resultant stress will cause some mature fish to die, especially in late spring. That's totally natural.
- Substantial kills resulting from disease are relatively uncommon and may only affect a single species.
- Substantial kills resulting from toxic events are frankly rare to ponds: toxins will affect all species (albeit differentially), typically affecting small fish (susceptible to lower effective doses) first.

- General pond/lake management (2)
- Managing aquatic plants (1)
- Filamentous green algae (3)
- Harmful algal blooms (4)
- Fisheries management (7)
- Fish Kills (6)
- Wild aquatic organisms (5)

Wild organisms to commonly colonize ponds

 These dudes are cool and can indicate healthy oxygen concentrations.

OHIO STATE UNIVERSITY EXTENSION

Top Five Pond Inquiries

Eugene Braig,

Program Director,

Aquatic Ecosystems

614-292-3823

braig.1@osu.edu

Misc. pond clinics, trainings, and conferences, Ohio, 2023

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES